Design Fragments

Ch: Motivation and overview (intro)
- <David: - Possible guided tour? Soup to nuts? Check Bridget’s thesis. Either in Intro or Motivation. Need some form of thesis in overview. >

Ch: Problem definition
- <Identify my worldview and contextualize thesis>

- OO Frameworks

 - What they are

 - Historical definitions

 - My best current definition

 - Recent incorporation of declarative elements

 - Why they are complex for clients

- Current best practice

 - Frameworks come with example programs

- Requirements for a solution (move this?)
Ch: Thesis and hypotheses

- Thesis: We can provide pragmatic help for programmers to use complex frameworks by providing (a) a form of specification, called a design fragment, to describe how a framework can be correctly employed through its plugin points, and (b) tools to assure conformance between the programmer’s source code and the design fragments.

Ch: Design Fragments
- Concepts

- Anatomy of a DF

- Types of DFs

- Lifecycle

- Language

 - Core: class, field, method

 - Additional: xml node

- Specifications

 - Partial specs, open ended

Ch: Tooling
- Views

- Incremental evaluation

- Extensions to specs, checkers, views

- Navigation

- Passive comprehension

- David comments:

 - engineering provability

 - usability

 - dovetails with current practice

 - background knowledge for case studies

 - challenging engineering questions

 - adoptability / usability

Ch: Case Study: Applets

- <Identify items supporting thesis>

- Hyp: Patterns exist

- Hyp: Programmers reference examples

- Hyp: Catalog size reasonable

- Hyp: DFs express patterns

- Hyp: Pattern conformance is high

- Evidence of hypotheses

Ch: Case Study: Eclipse

- <Identify items supporting thesis>

- Hyp: Patterns exist

- Hyp: Pattern conformance is high

- Hyp: Patterns are complex

- Hyp: DFs express patterns

- Hyp: Catalog size reasonable

Ch: Case Study: Acme Studio

- <Identify items supporting thesis>

- DFs express patterns

- DF authors refactor interfaces

- Client programmers can use DFs

Ch: Case Study: JPL

- <Identify items supporting thesis>

Ch: Cost-benefit analysis (if time)

- <Identify items supporting thesis>

Ch: User reports (perhaps this is folded into Acme Studio case study)
- Usability by non-author

- Feature clarity (architectural clarity)

- External DF authoring (Bradley)
 - Reflection and manual refactoring of API

Ch: Related work

- Add: Graphic on defining set vs. instance in set

- Add: Pattern Enforcing Compiler (PEC)

- Add: Michal Antkiewicz

- Add: XSnippet

- Add: Hou and Hoover 2006

- Add: New JavaFrames?

Ch: Discussion

- Analysis of hypotheses

- Accuracy: Are reported problems real?

 - Also: % false positive

- Completeness: Are all problems found?

 - Also: % coverage of specs

- What worked well, nor not
- DFs: limitations of technique – intrinsic and incidental

- Future work

 - Refactoring framework interfaces

 - Complexity homeostasis

Ch: Conclusion

Schedule
10 Nov:
- Detailed outline

- Structure of thesis->Hyp->Evidence

- Draft of Ch: Applets

- Draft of Ch: Tool

17 Nov:
- Draft of Ch: Design fragments

- Draft of Ch: Related work
24 Nov:

- Eclipse case study

- Draft of Ch: Problem definition

1 Dec:

- Eclipse case study

- Draft of Ch: Thesis and hypotheses

8 Dec:

- ? JPL ?

15 Dec:

22 Dec:

29 Dec:

5 Jan:

12 Jan:

19 Jan:

26 Jan:

2 Feb:

9 Feb:

16 Feb:

23 Feb:

2 Mar:

9 Mar:

16 Mar:

23 Mar:

30 Mar:

6 Apr:

13 Apr:

20 Apr:

27 Apr:

4 May:

11 May:

18 May: 20 May Commencement
0.1 Applet Framework

Applet framework lets java run in web browser.

AF has several lifecycle callback methods.

AF’s small size makes it a good research target.

All AWT programs can be applets.

0.2 Case Study Process

0.2.1 Sun applets

We selected 20 demo applets from JDK.

We identified uses of fwk methods and grouped them into DFs.

DFs started out too specific so we generalized them.

Irreconcilable differences yielded DF versions.

We collected the DFs into a catalog.

0.2.2 Internet Applets

We googled 30 internet applets.
We excluded simple AWT Applets.

0.2.3 DF = Category

Recognizing DFs = defining category.

0.3 Sun DFs

We found 10 DFs in the 20 Sun Applets.

Note some Sun DFs not found on Internet and vice versa.

0.4 DFs from internet

We collected 36 applets from internet.
Perhaps our sampling was biased.

Found two new DFs.

We tolerated some deviations from conformance rules.

We identified two categories: threaded DFs and Event DFs.

0.X DF Conformance

Conformance rules ensured matches.

0.5 Threaded DFs

<explain threading>

Five of the 10 DFs coordinate background activity.
One-time init task and One-time on-demand task…

The Timed Task …

Framework does not require thread use, but 27% do.

0.6 Event DFs
<explain Event handling>

Event handling DFs followed this structure.
Many failed to de-register with little operational impact.

0.7 Parameterized DF
Applets run on web pages and parameters can be passed to them.

Should match getParameter with getParameterInfo

0.X Manual DF

Demographics of Internet Applets

All Applets and Bindings

0.11 Threading Bug

0.12 DF Non-Conformance

0.13 Catalog Growth

0.8 Demo Code Was Copied

Field names were identical

0.X Discussion
- Hyp: Patterns exist

- Hyp: Pattern conformance is high

- Hyp: DFs express patterns
 - Examples of failure: parameterizedApplet, algorithmic while loop
- Hyp: Catalog size reasonable

- Hyp: Programmers could benefit from conformance assistance
 - Non-conformance on events, parameterized applet
- Hyp: Programmers could benefit from a catalog of DFs
 - Notification of DF deprecation

 - Faster to browse catalog than code
- Hyp: Programmers reference examples

