
Nov
em

be
r 2,

20
06

DRAFT

Design Fragments

George Fairbanks

21 April 2007

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
David Garlan, Co-Chair

William Scherlis, Co-Chair
Jonathan Aldrich
Ralph Johnson

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2007 George Fairbanks

Nov
em

be
r 2,

20
06

DRAFT

Keywords: Stuff

Nov
em

be
r 2,

20
06

DRAFT

Dedicated to my dog

Nov
em

be
r 2,

20
06

DRAFT

iv

Nov
em

be
r 2,

20
06

DRAFT

Abstract
Object oriented frameworks impose additional burdens on programmers that li-

braries did not, such as requiring the programmer to understand the method callback
sequence, respecting behavior constraints within these methods, and devising solu-
tions within a constrained solution space. To overcome these burdens, we express
the repeated patterns of engagement with the framework as a design fragment. We
analyzed the 20 demo applets provided by Sun and created a representative catalog
of design fragments of conventional best practice. By evaluating 36 applets pulled
from the internet we show that these design fragments are common, many applets
copied the structure of the Sun demos, and that creation of a catalog of design frag-
ments is practical. Design fragments give programmers immediate benefit through
tool-based conformance assurance and long-term benefit through expression of de-
sign intent.

Nov
em

be
r 2,

20
06

DRAFT

vi

Nov
em

be
r 2,

20
06

DRAFT

Acknowledgments
My advisors are great

Nov
em

be
r 2,

20
06

DRAFT

viii

Nov
em

ber
2,

20
06

DRAFT

Contents

1 Introduction 1

2 Object Oriented Frameworks 5
2.1 Object-oriented frameworks . 5
2.2 Why frameworks are complex for clients . 6
2.3 Current best practice . 7
2.4 Required features of a solution . 9

3 Thesis and Hypotheses 11
3.1 Thesis statement . 11
3.2 Central Hypotheses . 11
3.3 Strengthening Hypotheses . 12
3.4 Expected Contribution . 12

4 Design Fragments 15
4.1 Design Fragment Language . 16
4.2 Structure . 16
4.3 Behavior . 17
4.4 Bindings to Java Source Code . 19

5 Tool 21
5.1 Design Fragment Catalog View . 21
5.2 Design Fragment Instances View . 22
5.3 Eclipse Problems View . 23
5.4 Integration . 23

6 Case Study: Applet Framework 25
6.1 Design Fragments from Sun Demos . 26
6.2 Design Fragments from Internet . 28
6.3 Threaded Applets . 29
6.4 Event Handling Applets . 30
6.5 Parameterized Applets . 30
6.6 Similarities Between Sun and Internet Applets 31
6.7 Full List of Applets and Design Fragments . 31

ix

Nov
em

be
r 2,

20
06

DRAFT

7 Case Study: Eclipse Framework 33

8 Case Study: Acme Studio Framework 35

9 Case Study: JPL Framework 37

10 User Reports 39

11 Related Work 41
11.1 Categorization of the Research . 41
11.2 Role Modeling . 42
11.3 Precise Design Patterns, Code Ties . 43
11.4 Frameworks . 43
11.5 Aspects . 45
11.6 General Programming Assistance . 45
11.7 Comparison of Design Fragments with Related Work 45
11.8 Design Fragments vs. Role Modeling . 46

12 Analysis of Hypotheses 49
12.1 Hypotheses . 49

12.1.1 from Applet OOPSLA paper . 49
12.1.2 Central Hypotheses . 50
12.1.3 Strengthening Hypotheses . 50

12.2 Analysis . 51
12.3 Hypothesis: Patterns Exist in Code . 51
12.4 Hypothesis: Programmers Reference Examples 51
12.5 Hypothesis: Effort to Create a Catalog Tapers 52
12.6 Hypothesis: Design Fragment Language Can Express Patterns 53

13 Conclusion 55

Bibliography 57

x

Nov
em

be
r 2,

20
06

DRAFT

List of Figures

1.1 Threaded applet example . 2

2.1 JavaDoc for ISelectionChangedListener . 7
2.2 JavaDoc for IResourceChangeListener . 8

4.1 Structure of threaded applet . 17
4.2 RoleThread structure . 17
4.3 start() method in java.applet.Applet . 18
4.4 Declaration of a design fragment instance . 19
4.5 Binding of design fragment instance to Java code 19

5.1 Design fragment catalog view . 22
5.2 Design fragments instances view . 23
5.3 Problems view . 23

6.1 Simple AWT applet . 25
6.2 Mouse event handling structure . 30
6.3 Parameter handling structure . 31

12.1 Catalog size . 52

xi

Nov
em

be
r 2,

20
06

DRAFT

xii

Nov
em

be
r 2,

20
06

DRAFT

List of Tables

6.1 Design fragment frequency . 27
6.2 Non-conformance to design fragment . 29
6.3 All applets with origin and counts of design fragments 32

11.1 Categorization of the research . 42

xiii

Nov
em

be
r 2,

20
06

DRAFT

xiv

Nov
em

be
r 2,

20
06

DRAFT

Chapter 1

Introduction

Programmers use object oriented frameworks because they provide partially-complete and pre-
debugged solutions to common problems, such as windowing systems and application servers.
Popular examples of frameworks include Enterprise Java Beans[25], Microsoft .NET [4], and
Java applets [24].

Frameworks differ from code libraries in that the framework, not the programmer, provides
important parts of the architectural skeleton of the application [20] and, in doing so, places ad-
ditional burdens on the programmer. The applet shown in Figure 1.1 is from the original Sun
Java Development Kit (JDK) and it has a bug in it. No amount of code inspection can reveal
the bug unless you also know how the applet framework will drive that code. The applet frame-
work invokes the start() method then the stop() method on the programmer-provided
code – perhaps this much could be guessed from the method names. Additionally, the runnable
framework will invoke the run() method on the applet sometime after the timer.start()
method is called. The bug is a race condition that can be reasoned about only if you know that
the framework may call start() and stop() multiple times.

The programmer’s intent during the stop() callback is to signal to the running thread that
it should terminate. The signal is that the timer field is set to null. The race condition occurs
when the framework invokes both start() and stop() before the thread checks the value
of the timer field. When that happens, the old thread continues executing, since it missed
the signal to terminate, and a new thread executes too, since it was started in the second call
to start(). The bug was fixed in the next release of the JDK and the check for timer !=
null was replaced with timer == Thread.currentThread(). The burden placed on
the programmer is to know when the framework will call his code.

Initially, it is not apparent why this applet is using a thread at all. Because this is a clock
applet, it needs to regularly paint the correct time onto the screen. It would seem reasonable to
do this painting in the start() method. However, the framework has an implicit requirement
that the programmer complete his processing within a few fractions of a second in the start()
and stop() callbacks because the GUI of the applet is blocked until these methods complete.
So, if the programmer were to just continuously paint the clock after the start() callback,
the GUI would be unresponsive. The creation of a background thread is to satisfy both the
framework’s demands and the program’s purpose. The burden placed on the programmer is to
know what rules his code must follow.

1

Nov
em

be
r 2,

20
06

DRAFT

public class Clock2
extends java.applet.Applet
implements Runnable {

...
Thread timer = null;
...
public void start() {

if (timer == null) {
timer = new Thread(this);
timer.start();

}
}

public void stop() {
timer = null;

}

public void run() {
while (timer != null) {
try {

Thread.sleep(100);
} catch (InterruptedException e){}
repaint();

}
timer = null;

}

Figure 1.1: Threaded applet example

If the programmer were freed from the framework’s choice of what methods get called when,
he might already know how to coordinate two threads to avoid a race condition. The programmer
cannot rewrite the framework, so he must live within the framework’s rules and some of his prior
expertise cannot be used. In extreme cases, a framework provides just a single way to accomplish
a task. For example, in the applet framework there is only one way to find out what the mouse
is doing. The code must register as a mouse listener, implement the MouseListener interface
and its required callback methods, and de-register. Additionally, this single path to success must
be coordinated with the applet’s callback sequence, so registering almost always happens in the
init() callback and de-registering in destroy(). The burden placed on the programmer is
to be more ingenious in finding a solution within a constrained solution space.

For other forms of reuse, such as libraries, programmers use method-level documentation
and possibly method specifications. Neither of these is an appropriate place to document some-
thing like the example shown because the documentation would need to be spread across many
methods. Furthermore, there are other things that can be accomplished with the start() and
stop() methods besides coordinating a thread, so the documentation for these methods would
be cluttered with many “if you want to do this, then ...” clauses.

2

Nov
em

be
r 2,

20
06

DRAFT

Instead, leading framework authors [8] suggest that programmers follow the “Monkey see /
monkey do” rule and copy code examples in which other programmers have used the framework.
“When copying an example, you are looking for structure, much of which you’ll typically delete
because it doesn’t apply, or at least not yet.” When a programmer applies this rule, he must
recognize that the code does what he wants (e.g., coordinate a background thread with an applet),
cull the extra details, and reproduce that code elsewhere. However, finding such concrete patterns
is difficult and time-consuming, separating out the relevant parts is error-prone, and preserving
design intent is impossible. It is with good reason that this practice has been termed “rape and
paste programming” [1].

Programmers want help that provides the advantages of “Monkey see / monkey do” but re-
moves the drawbacks. Ideally, this help would encode the structure of the solution, reveal relevant
details about the framework, avoid swamping them with information, and check conformance
between their code and their intent.

This paper describes two contributions toward that ideal. First, we provide an improved tech-
nique to help programmers overcome the burdens of using frameworks. The technique, called de-
sign fragments, is based on the representation of structural patterns in the vein of JavaFrames [12]
and OOram [29]. To the description of what the programmer must do, we add a minimally suffi-
cient description of how the framework will act on the programmer’s code so that the programmer
can reason about the code’s interaction with the framework. Tools inside the programmer’s devel-
opment environment can compare the programmer’s stated intent with his source code and warn
him when the two diverge. Such an approach has clear short-term benefit for the programmer.

It promises long-term benefits also because design intent has been expressed. For example,
Sun fixed the Clock2 applet shown above between JDK 1.0 and 1.1, yet an internet search reveals
that applets based on that 1.0 code example are still prevalent. With design intent expressed, the
promise is that tools to check conformance would help with this and similar evolution problems.

In short, design fragments provide programmers with solutions, assure conformance with
those solutions through code analysis, and, because design intent has been captured, provide
an opportunity to catch errors, speed code comprehension, and improve code quality over the
long-term.

The second contribution is a detailed case study on the applet framework that examines how
fifty-six applets use design fragments. The case study allows us to evaluate the following hy-
potheses. 1. Source code that uses a framework is likely to follow structural patterns. 2. Pro-
grammers refer to examples to learn how to use frameworks. 3. The effort to create a catalog
of design fragments tapers off. 4. The design fragments language can be used to express the
patterns we discovered in the example code. Hypotheses like these are necessary in order for
a structural pattern technique, such as design fragments or JavaFrames, to be a viable solution.
Our results indicate that, for the most part, the hypotheses are true.

In this paper we describe the concepts behind design fragments in detail, the language used
to express design fragments, the tooling we have built that allows conformance checking be-
tween the programmers code and the design fragment, and how we envision design fragments
contributing to the software life cycle. We describe a case study involving the Java applet frame-
work and analyze our hypotheses with respect to the collected data. We conclude by relating
design fragments to related work and describe our future plans.

3

Nov
em

be
r 2,

20
06

DRAFT

4

Nov
em

be
r 2,

20
06

DRAFT

Chapter 2

Object Oriented Frameworks

2.1 Object-oriented frameworks

An object-oriented framework is characterized by an inversion in the normal control relationship
between the programmer and the library [31]. In the traditional usage of a library, the program-
mer decides when to invoke library functions and which ones to invoke. In a framework, the
programmer is told by the framework when and where his code will be called.

Programmers are willing to sacrifice this control in order to receive other benefits. Exam-
ples of benefits include automatic management of transactions and concurrency (Enterprise Java
Beans), operation within a windowing operating system (Microsoft Foundation Classes), and
interoperability with other tools in a software engineering environment (Eclipse framework).
Typically, the size of the framework code will dwarf the size of applications written within it.
The Eclipse framework, for example, is almost 1.5 million lines of Java code while an application
written to work inside of it may be as small as a few dozen lines. Additionally, the framework
embodies the architectural precedent in specialized application domains, freeing the client pro-
grammer from having to express this.

Frameworks typically provide the superstructure of the application and the skeleton of its
control flow [21]. Programmers must attach their code to the framework at predefined points,
sometimes called “hooks”, or “hotspots”. Common mechanisms for plugging into a framework
include subclassing using the template method, registering for callback events using the observer
pattern, or installing new handlers using the strategy pattern [5]. Use of the template method is
seen in the example from the introduction when the programmer must subclass from the ViewPart
class and override the createPartControl method; registering for a callback is similarly seen when
the programmer must invoke addSelectionChangedListener on the framework.

I refer to the collection of framework API elements that are used by a programmer to com-
plete a task as a plugin point. A plugin point lacks the locality found in a library interface. In
the example from the introduction, the source code reveals that the plugin point concept maps
to a non-localized collection of framework API elements, including the ViewPart, TreeViewer,
SelectionChangedEvent classes and the createPartControl, addSelectionChangedListener, selec-
tionChanged, getSelection, getFirstElement methods. If similar functionality were found in a
library, there might be a single function named getCurrentSelection.

5

Nov
em

be
r 2,

20
06

DRAFT

It is difficult to cleanly distinguish libraries from frameworks. Like frameworks, some li-
braries constrain the sequence of calls a programmer can make to them. One example is a net-
work socket library, where a call to open a socket must precede any calls to write to the socket.
Such libraries are similar to frameworks in the demands that they place on programmers.

2.2 Why frameworks are complex for clients
With the benefits of a framework come the costs. An inherent attribute of frameworks is a
dramatic reduction in the size of the solution space available to the programmer. At times the
solution space may consist of a single path, as seen in the earlier example. Frameworks must
constrain the solution space in order to provide their benefits. For example, it is difficult to imag-
ine how Enterprise Java Beans could provide assurances regarding concurrency if beans were
allowed to create and mange their own threads. In the worst case the framework may constrain
the solution space so much that there is no available path for the programmer to accomplish his
goal. For example, because of an oversight, for many years the Enterprise Java Beans framework
lacked a mechanism to schedule a bean to execute at a particular time.

Inherent differences make comprehension of frameworks more difficult than libraries. Since
frameworks typically provide the skeleton of the structure and control flow of an application,
browsing the client’s source code provides only disconnected clues to the application’s overall
structure and behavior. This is in contrast to an application similarly written with libraries,
where the programmer’s code shows basic structure and control flow. Comprehension of the
whole is easier when viewing the top of the tree rather than the leaves. In the library case, the
programmer writes the most abstract parts of the program and the libraries handle the details;
understanding the big picture is easy. Conversely, when using a framework the programmer
provides the details and the framework provides the structure; understanding the big picture is
much harder. A comparison with a corporation may be illustrative: The CEO has an easy time
delegating a job to a branch manager even if he does not understand the branch manager’s day-to-
day activities, but a desk clerk could perfectly understand each of his own day-to-day activities
but only a murky idea of how they served the corporation.

Programmers find it difficult to identify the plugin points of a framework [20]. Frameworks
are built using the same raw materials as any other object oriented program, namely classes with
methods and attributes, so it is difficult to identify which parts of the framework are intended to be
hidden machinery and which parts are candidates for replacement or augmentation. Mainstream
programming languages lack an explicit representation of framework plugin points but future
languages may embrace concepts from the work in this thesis and could represent framework
plugin points explicitly.

There are two additional attributes of frameworks that make them difficult to use. It is often
the case that the programmer writing a framework plugin is not allowed to change the framework
in any way, perhaps because it has been created by another organization. This limits the program-
mer’s options and forces him to work around framework bugs or design flaws. In more extreme
cases the programmer will additionally have no access to the source code of the framework. This
limits his ability to comprehend the framework to reading documentation and experimentation.
Both of these cases can also occur with traditional libraries with similar consequences.

6

Nov
em

be
r 2,

20
06

DRAFT

/**
* A listener which is notified when a viewer’s selection changes.

* @see ISelection

* @see ISelectionProvider

* @see SelectionChangedEvent

*/
public interface ISelectionChangedListener {

/**
* Notifies that the selection has changed.

* @param event event object describing the change

*/
public void selectionChanged(SelectionChangedEvent event);

}

Figure 2.1: JavaDoc for ISelectionChangedListener

2.3 Current best practice
Despite the complexities of using frameworks, programmers do manage to work within their
constraints. A short description of some of the current coping strategies and how current tools
are used is illuminating.

Programmers can browse example code. The example code is known to work. Naming con-
ventions usually indicate which classes are from the framework and this aids identification of
plugin points. Another place to begin looking for plugin points is in programmer-written code
that subclasses from framework classes or implements framework interfaces. Determining the
full extent of the plugin point is still difficult but programmers can err on the side of caution.
Programmers may inadvertently copy extra code, mistakenly thinking it to be required. A re-
lated strategy is to take an existing piece of code, eviscerate its core logic leaving framework
interaction behind, then add the desired behavior.

Programmers can browse available APIs and API documentation. Even when the documen-
tation for a single method is not the whole story, it is at least part of the story. Classes and
methods are the building blocks of framework plugin points and their documentation helps the
programmer build a mental model of the framework and its plugin points. Since using a frame-
work usually entails coordinating many classes and interfaces from the framework, it is not clear
where the documentation should live. In the case of the example from the introduction, this
documentation is provided for the ISelectionChangedListener:

Looking at the references (ISelection, ISelectionProvider, and SelectionChangedEvent) yields
similarly terse descriptions. The programmer would prefer to be told about all the parts found in
the introduction example, but references to createPartControl, ViewPart, TreeViewer, and others
are missing. Most troubling is missing information about how to register for notifications with
addSelectionChangedListener and rules about when it is safe to downcast the ISelection to an
IStructuredSelection. Things are not always so difficult to figure out, however, and if the pro-
grammer were learning about resource change events then IResrouceChangeListener has some
helpful prose:

7

Nov
em

be
r 2,

20
06

DRAFT

/**
* A resource change listener is notified of changes to resources in the workspace.

* These changes arise from direct manipulation of resources, or indirectly through

* resynchronization with the local file system.

*
* Clients may implement this interface.

*
* @see IResourceDelta

* @see IWorkspace#addResourceChangeListener(IResourceChangeListener, int)

*/
public interface IResourceChangeListener extends EventListener {

/**
* Notifies this listener that some resource changes are happening, or have already happened.

*
* The supplied event gives details. This event object (and the resource delta within it)

* is valid only for the duration of the invocation of this method.

*
* Note: This method is called by the platform; it is not intended to be called directly by clients.

*
* Note that during resource change event notification, further changes to resources may be disallowed.

*
* @param event the resource change event

* @see IResourceDelta

*/
public void resourceChanged(IResourceChangeEvent event);

}

Figure 2.2: JavaDoc for IResourceChangeListener

8

Nov
em

be
r 2,

20
06

DRAFT

Programmers can browse the framework source code. Since the framework code is often
large, it is difficult and time consuming to find the relevant parts. Once browsing the framework
source code, the programmer is exposed to all the detail needed, but also much more than is
required.

Programmers can consult external documentation on the framework such as books. Books
on frameworks are usually not comprehensive and become stale as the framework evolves. De-
spite these drawbacks, narrative descriptions of the framework and its plugin points are probably
the most effective way to learn to use a framework. Notably, the existence of such books is
an indication that our current API-level documentation alone is not fully meeting the needs of
programmers.

Programmers can use “wizards” that ask some questions and then generate code. Wizards
and other generators must have knowledge of how framework plugins are constructed in order to
generate accurate code. So far, wizards have been limited to initial code creation and cannot be
used to insert code into an existing system. The framework knowledge does not escape from the
wizard except in the code that is generated – that is, the wizard stays smart but does not make
the programmer smarter. Compilers have many of the same qualities except that with wizards
the programmer is expected to edit and evolve the resulting source code.

Programmers can take training courses from expert instructors. Courses can be quite effective
in conveying the philosophy of a framework and many of the patterns. A course, however, is
separated from the programming task in time and in space: the programmer takes the course at a
different time than he is creating his system and the programmer typically has to leave his work
environment in order to attend the class.

Even when these techniques are effective the created structure resides only in the program-
mer’s head. While this enables the programmer to create correct code, it does not capture that
knowledge in a form that can be shared with other programmers or with analysis tools that oper-
ate on his code.

2.4 Required features of a solution
Currently available techniques are helpful but insufficient for the needs of programmers using
frameworks. Ultimately, the insufficiency derives from the lack of representation for a plugin
and a plugin point. Proximately, the following tasks should be supported.

“How do I accomplish this?” In an unconstrained environment, a programmer is limited only
by his creativity and ability to manage complexity. Programmers learn early on to solve problems
using existing resources. When using a framework, however, the programmer is limited to the
mechanisms provided by the framework and likely cannot build his own mechanisms. Finding a
path to accomplish his task is harder. Discovering a path when using a library usually requires
just a scan of available method names but no similar vehicle is feasible when using frameworks.

“Have I used the framework correctly?” Plugging into a framework consists of a number of
coordinated tasks yet it is hard for the programmer to gain assurance that all the necessary tasks
have been done. The commonly available method- and class-level documentation provided are
insufficient to convey the complexity of a plugin point that spans methods and classes.

“What is going on here?” When browsing an existing program that calls a library, it is easy

9

Nov
em

be
r 2,

20
06

DRAFT

to identify the calls to the library. In contrast, when browsing code that plugs into a framework,
it is difficult to identify the parts of a program that are participating in the plugin. The design
intent of plugging into the framework is missing, as is a list of the parts that are participating
in the plugin. Consequently, programmers browsing existing code, either for maintenance or to
learn how to use a framework, may make mistakes.

10

Nov
em

be
r 2,

20
06

DRAFT

Chapter 3

Thesis and Hypotheses

3.1 Thesis statement
We can provide pragmatic help for programmers to use complex frameworks by providing (a) a
form of specification, called a design fragment, to describe how a framework can be correctly
employed through its plugin points, (b) tools to assure conformance between the programmer?s
source code and the design fragments, and (c) techniques for refactoring framework plugin points
to make their correct use more assurable.

3.2 Central Hypotheses
• The design fragment technique can be applied to existing large commercial frameworks,

real programming languages, and to off-the-shelf code

Provide a catalog of reusable design fragments for two large frameworks (e.g., Eclipse
and EJB): Applet, AcmeStudio, Eclipse, JPL?

Case studies of two large frameworks with bindings between 3 open source programs
and the design fragment catalogs: Applet (50), AcmeStudio (4-6), Eclipse (2-5)

• The variety of design fragments is limited for a given plugin point, enabling the creation
of a reasonable size catalog of design fragments with good coverage of the code seen in
practice

From bindings between catalogs and programs, demonstrate that with each new pro-
gram, fewer new design fragments must be added to catalog: Applet, AcmeStudio.
Maybe: Eclipse, JPL

Demonstrate that the catalog has, say, 80% coverage of a survey of OSS programs:
Applet coverage

• It is possible, through analysis, to provide programmers with assurance that their code
conforms to the expressed constraints of the framework.

Implement simple static analysis for conformance assurance: Required new call, re-
quired new instance, class ref in XML

11

Nov
em

be
r 2,

20
06

DRAFT

Design how analysis tools could extend the design fragment language

Report on what % of DF annotations can be checked through analysis

Navigation tools for DF, code, bindings, and catalog

3.3 Strengthening Hypotheses
• The design fragment technique has a low entry barrier for programmers and design frag-

ment authors.

Report on usability by others (informal): Bradley, Nicholas?, others?

• The explicit representation of the framework plugin points as design fragments is cost-
effective when applied to widely-used frameworks

Cost-benefit analysis of design fragments vs. training, books, etc.: Task analysis (if
time)

• The use of design fragment technique can reduce the time for framework novices and
experts to become productive in an unfamiliar framework

Report on usability by others (informal): Bradley, Nicholas?, others?

3.4 Expected Contribution
If successful, this work will provide the following contributions to software engineering.

• Initial steps towards a means to express the abstractions that captures the essence of the
interaction between frameworks and the client’s code.

• This can lead to improved techniques to combat complexity in large systems. For a con-
stant cognitive load on the programmer, we can increase complexity of the framework and
decrease the time to correctly build code that uses a framework.

• This can also lead to improved techniques to increase quality for frameworks and clients.
For a constant cognitive load on the programmer, we can increase the plugin quality
through modeling and assurance and we can do so in a way that is incremental, scalable,
and composable.

• A new technique to audit and improve the design of existing frameworks, yielding reduced
complexity and increased assurability of the plugin points.

• An improved level of abstraction through captured design intent: We can provide richer
analysis and refactoring of systems in general due to the presence of explicit design intent
regarding higher-level intentions, e.g., “it is my intent with this code to create an Enterprise
Java Bean”.

• A basis for metrics to quantify the complexity of framework plugin points.
• An implementation base for future work on Java frameworks. This implementation will

be in common Java and the Eclipse framework, which provides a base for future research,

12

Nov
em

be
r 2,

20
06

DRAFT

for example more sophisticated static analysis tools or architecture tools that manipulate
framework plugin points and design fragments.

13

Nov
em

be
r 2,

20
06

DRAFT

14

Nov
em

be
r 2,

20
06

DRAFT

Chapter 4

Design Fragments

A design fragment is a pattern that encodes a conventional solution to how a program interacts
with a framework to accomplish a goal. It has two primary parts. The first is a description of
what the programmer must build to accomplish the goal of this design fragment, including the
classes, methods, and fields that must be present. This description also includes the behavior of
these methods. The second part of the design fragment is a description of the relevant parts of the
framework that interact with the programmer’s code, including the callback methods that will be
invoked, the service methods that are provided, and other framework classes that are used.

A design fragment provides a programmer with a “smart flashlight” to help him understand
the framework. This smart flashlight illuminates only those parts of the framework he needs
to understand for the task at hand. Without the smart flashlight, a programmer browsing the
framework classes is swamped with private implementation details or unable to differentiate the
relevant from irrelevant. Even simple parts of a framework have enormous complexity [17]: In
the Swing user interface framework, the JButton class has 160 methods and fields, while JTree
has 336.

Each framework will have its own catalog of design fragments that act like a handbook, col-
lecting conventional solutions to problems. Programmers can see examples of the design frag-
ment in use by navigating from the catalog to the code that implements a given design fragment.
Discipline must be used when revising design fragments in the catalog, similar to the discipline
used in revising code libraries with existing clients.

Design fragments have two immediate benefits for programmers. First, analysis tools can
check conformance between the programmer’s stated intent and his source code. Second, pro-
grammers who do not know a part of the framework can quickly find a solution in the catalog.
We believe it is essential to provide programmers immediate value for their investment of effort.

Once programmers have started using design fragments, long-term benefits arise.

• Since programmers have expressed their intent (e.g., this code follows the Threaded Applet
design fragment), it becomes possible to analyze the code with respect to that intent. Even
if analysis tools are not available at the time the code is written, the expression of intent
endures and can be checked by stronger tools available tomorrow. For example, our current
tools cannot check for concurrency bugs today but in the future static analysis tools from
the Fluid project [11] could ensure correct threading behavior.

15

Nov
em

be
r 2,

20
06

DRAFT

• The use of design fragments allows other programmers to comprehend the code more
quickly. At a glance it’s possible to see, for example, that this is an applet that listens
for mouse events, has a background task, and takes in parameters from HTML. Design
fragments convey architectural information that is different from and complimentary to an
Acme [10] architecture model.

• Evolution of code is easier. As was seen in the example from the introduction, the bug in
the source code was detected and fixed but not before other code had cloned its structure.
A design fragment could be marked as deprecated, causing programmers to examine their
code and fix the bug. Note that in the example there is no single method or class that can
be deprecated, only the collection of methods and classes that are used in a particular way.

• Unnecessary code diversity can be reduced. Instead of a task being implemented slightly
differently by various programmers on the same team, they could standardize on a partic-
ular design fragment. This yields benefits in code comprehension and may reduce bugs.
Framework authors could deliver both example applications, as they do now, as well as
a catalog of design fragments. This catalog could act as a seed crystal so programmers
would use the conventional solution unless they had a good reason to deviate.

4.1 Design Fragment Language

In describing the design fragment language, we will continue to use the code example from the
introduction (despite its bugs), shown earlier in Figure 1.1. The intention of the language is to
express:

• the structure of the programmer’s code

• the behavioral requirements of the programmer’s code

• the relevant structure of the framework code

• the relevant behavior of the framework.

One of our goals is to keep the language sufficiently simple that programmers can rapidly create
and comprehend design fragments.

4.2 Structure

The structure for the threaded applet example is shown as a UML class diagram in Figure 4.1.
The classes above the line are provided by the framework. Note that only methods that are
relevant to this design fragment are shown on the framework classes. The classes below the line
are roles in the design fragment and will be bound to the programmer’s classes.

The design fragment language is expressed in XML. The language can refer to classes, in-
terfaces, fields, methods, return values, and method parameters. Figure 4.2 shows how the Ro-
leThread class is represented. The provided=“no” clause indicates that RoleThread is not a
framework-provided class.

16

Nov
em

be
r 2,

20
06

DRAFTFigure 4.1: Structure of threaded applet

<class name="RoleThread" provided="no">
<implementsinterface

name="java.lang.Runnable" />
<method name="run" returnvalue="void">
</method>

</class>

Figure 4.2: RoleThread structure

4.3 Behavior
In addition to the code structure, the programmer needs to know how his code should behave.
The required behavior in the threaded applet example is as follows. In the start() callback,
the code should create a new RoleThread instance and assign it to the roleThread field. In the
stop() callback, the code should set the roleThread field to null. We use the null field as a sig-
nal to the thread that it should terminate because calling roleThread.stop() is deprecated
and unsafe. Then, in the run() callback, the code should loop repeatedly while checking that
the roleThread field has not been set to null.

Most of this behavior can be expressed in the design fragments language. The required cre-
ation of a new instance is expressed like this: requirednewinstance target=“java.lang.thread.Thread”
arguments=“”. A required method call is expressed like this: requiredcallspec target=“roleThread”

17

Nov
em

be
r 2,

20
06

DRAFT

method=“start” arguments=“”. Additionally, freeform text can also be entered as a specifica-
tion:
freeformspec text=“By the end of this method, a new thread must be running and assigned to
roleThread field”. However, note that the looping behavior required in run() cannot be ex-
pressed in the current design fragments language except as freeform text.

Inheritance and interfaces work the same way as Java, which includes single inheritance for
classes but multiple implementations of interfaces. Constraints on behavior that are placed on
superclasses or interfaces are inherited by subclasses.

New constraints can be added and, optionally, corresponding analyses for checking the con-
straints. The parser ignores any constraints it does not understand. So, for example, a method
could be written with the following specification: timingspec totaltime=“200ms” to indicate that
the method should complete within 200ms. If desired, an analysis could be written to advise the
programmer on the running time behavior of his method and the likelihood that it would violate
the specification.

<class name="java.applet.Applet"
provided="yes">

<method name="start" returnvalue="void">
<freeformspec text="Callback method;

invoked when framework decides to
initialize your applet." />

<invocation-cardinality value="*" />
<invocation-lifecycle value="yes" />
<invocation-type value="callback" />
<invocation-pair value="stop" />
<invoked-before value="stop" />
</method>

...
</class>

Figure 4.3: start() method in java.applet.Applet

The behavior of the framework classes can be expressed with the specifications described
above, but it can also use some new specifications that are specific to frameworks. In the threaded
applet example, the programmer needs to know which framework methods are callback meth-
ods, the sequence of the callbacks, and how many times the callback can occur. The specification
invocation-type value=“callback” indicates that this framework method is a callback, not a ser-
vice method. Callback methods are invoked by the framework on the programmer’s code while
service methods are provided by the framework for the programmer to invoke. Most callback
methods are lifecycle methods but not all. On applets, the specification invocation-lifecycle
value=“yes” would be placed on init(), start(), stop(), and destroy(), but not on
paint() or getParameterInfo(). Some callbacks occur in matched pairs, so the specifi-
cation invocation-pair value=“stop” would be placed on the start() method. Finally, placing
the specification invoked-before value=“stop” on the start() method indicates that it will be
invoked before the stop()method. An example of these specifications is seen in the framework

18

Nov
em

be
r 2,

20
06

DRAFT

@df.DFInstances({
@df.DFInstance(
df=”BackgroundContinuousV1”,
inst=”bc1”)

}) package demos.applets.clock;

Figure 4.4: Declaration of a design fragment instance

@DFTypeBindings({
@DFTypeBinding(inst=”bc1”,
role=”RoleApplet”),

@DFTypeBinding(inst=”bc1”,
role=”RoleThread”)

}) public class Clock2
extends java.applet.Applet
implements Runnable {

...
@DFFieldBindings({
@DFFieldBinding(inst=”bc1”,
role=”roleThread”)

}) Thread timer = null;
...
@DFMethodBindings({
@DFMethodBinding(inst=”bc1”,

role=”start”)
}) public void start() {
...

Figure 4.5: Binding of design fragment instance to Java code

method start() on the java.applet.Applet class in Figure 4.3.

4.4 Bindings to Java Source Code
Each time a programmer wants to use a design fragment, he declares it using a Java 5 annotation.
Figure 4.4 shows the declaration of a new instance named bc1 of the design fragment Back-
groundContinuousV1. The Java 5 annotation, which applies to the demos.applets.clock package,
is shown italicized. This annotation lives in the special Java file package-info.java.

Figure 4.5 shows some of the bindings between the roles in the design fragment and the
Clock2 class. Again, the Java5 annotations are shown italicized. Note that here the Clock2
class plays both the RoleApplet and RoleThread roles from the design fragment, while in other
applets, the RoleThread is sometimes a different class than the applet.

The advantages of using Java 5’s annotations are that it is a standard mechanism and the
annotations can be typechecked using the standard Java compiler. One disadvantage that can be
seen above is that conceptually simple bindings become quite verbose.

19

Nov
em

be
r 2,

20
06

DRAFT

20

Nov
em

be
r 2,

20
06

DRAFT

Chapter 5

Tool

In order to provide feedback on our ideas and in order to execute a large case study, we built tools
to support the creation, binding, and evaluation of design fragments. The tool is an extension to
the Java Development Tooling for the Eclipse integrated development environment (IDE) [8].
The tool has three parts that are visible to programmers. The first part is a new view in the IDE
that displays a catalog of design fragments, as shown in Figure 5.1. The second part is a new
view that displays a list of the design fragments that have been bound to the source code, as
shown in Figure 5.2. The third part is a new set of problem markers that appear in the standard
Eclipse problem view, as shown in Figure 5.3. There are many components that run behind
the scenes to keep these views updated, including a builder that re-parses the design fragment
definitions when the source files change, a builder that re-evaluates the design fragment bindings
when relevant Java source files change, and analysis tools that check conformance between the
design fragments and the Java code.

5.1 Design Fragment Catalog View

Figure 5.1 shows the design fragments catalog view for the Java applets framework. The Back-
ground Continuous Task V1 design fragment has been opened, showing the text of its goal, the
parts provided by the framework, and the parts the programmer must build. The definition of
the run() callback method has been opened, showing the specifications of when and how often
this callback will be invoked by the framework.

The section on programmer responsibility shows the two class roles, RoleApplet and Ro-
leThread. The class role RoleApplet must be a subclass of java.applet.Applet, must have a
field named roleThread of type java.lang.Thread, and must implement the two callback meth-
ods start() and stop(). The start() callback method has been opened, showing the
specifications of what the programmer is expected to do in order to fulfill framework obligations
and this design fragment.

The design fragment catalog is represented as an Eclipse project. The files in the project
are the XML design fragment definitions. One advantage of this representation is that Eclipse
provides integration with source code control repositories, like CVS or Subversion, for files
within projects, so programmers can stay updated with the latest design fragment catalog by

21

Nov
em

be
r 2,

20
06

DRAFT
Figure 5.1: Design fragment catalog view

synchronizing the project with the server. Following the Debian [3] example of maintaining
stable, testing, and unstable builds of their Linux distribution, each design fragment catalog has
folders for stable, testing, and unstable design fragments. It is expected that most programmers
would use the stable design fragments, which have been vetted by the catalog maintainer, but less
risk-averse programmers or ones on the cutting edge could use the testing or unstable folders.
Each catalog contains design fragments for just one version of a framework. While the applet
framework has changed relatively little over time, other frameworks can change significantly as
they evolve.

5.2 Design Fragment Instances View
Each use of a design fragment, which we call a design fragment instance, is given a name and
declared in the package-info.java file. Usually a design fragment is used just once per class or
package, but not always. For example, one of the applets we analyzed is a two-player Tetris
game that used two background threads, so it used two instances of the Background Continuous
Task V1 design fragment.

Figure 5.2 shows some of the nine instances of the Background Continuous Task V1 design
fragment. This view shows, for each role in the design fragment, where it is bound in the Java
source code. For example, the scope.at1 instance has the RoleApplet and RoleThread roles
bound to the Scope Java class, the roleThread role bound to the clock field. This view will
indicate binding problems, such as when a class role is not bound to any Java class.

If there are any conformance analysis failures then they are shown in this view. The speci-
fications for the start() method have been opened, revealing checkmarks. As currently im-
plemented, the tool can detect when a method fails to invoke a required method and it does this
through trivial analysis of the method body. The user interface distinguisheds three states: pass,

22

Nov
em

be
r 2,

20
06

DRAFT

Figure 5.2: Design fragments instances view

Figure 5.3: Problems view

fail, or no-analysis .

5.3 Eclipse Problems View
In the Eclipse IDE, a single view collects all problems found in the environment. The design
fragments tool extends this view by adding new problem markers that appear within the view.
As seen in Figure 5.3, when source code fails to meet the specifications defined in the design
fragment, these problems are reported as warnings in the problems view. Clicking on the problem
will navigate the programmer to the line in the source code where the problem was detected.

Most problems are reported as warnings, including conformance analysis failures and in-
complete bindings. A few problems are reported as errors, including the declaration of design
fragment instances where the design fragment is not found in the catalog.

5.4 Integration
The Eclipse IDE includes convenient features like incremental compilation upon the saving of
source files so that the list of problems is always accurate. Programmers have grown accustomed
to this style of interaction with their tools, so the design fragments tools operate in a consistent
way. Changes to the source files that define design fragments cause those files to be re-parsed and
presented in the catalog view. Any changes to the catalog will propagate to the design fragment
instances view. Similarly, changes to the Java source code will trigger re-analysis of the bindings
to design fragments and these will be displayed in the instances view. Any problems detected
during these steps are reflected in the problems view.

23

Nov
em

be
r 2,

20
06

DRAFT

24

Nov
em

be
r 2,

20
06

DRAFT

Chapter 6

Case Study: Applet Framework

The applet framework allows Java code to run inside a web browser. Sun has bundled demon-
stration applets with the Java Development Kit (JDK) since its original version. The JDK today
contains twenty demo applets and thousands more can be found on the internet with a simple
search.

The applet framework defines several lifecycle callback methods that are invoked on the
programmer’s applet when the user starts the applet in the web browser. The applet first receives
an init() callback, then at least one start() and stop() pair of callbacks, then a single
destroy() callback. The framework also defines service methods that can be invoked by the
programmer’s code, such as addMouseListener().

Many other frameworks are more complex than the applet framework but their complexity
arises primarily from scale, not from a difference in their natures. All framework programmers
are presented with the same challenges, including understanding which methods are callbacks
or service methods, the sequence of callbacks, and the assumptions the framework makes about
behavior within the callback methods. The applet framework is a suitable choice for research
because all of these essential challenges are present, it is well known, and it is small. One
exception is that some frameworks rely on declarative elements in addition to object oriented
mechanics, either in external files or Java annotations, and we plan to examine this in our future
work.

Not all applets, however, meaningfully engage in the applet framework; for an example see
the one shown in Figure 6.1. Since the applet framework is an extension to the Abstract Wid-
get Toolkit (AWT), every legal AWT program is also a legal applet so long as it derives from
java.applet.Applet. Since it is our desire to investigate framework use, we must exclude such ap-

public class Simple
extends java.applet.Applet {

public Simple() {
add(new java.awt.Label("Hello"));

}
}

Figure 6.1: Simple AWT applet

25

Nov
em

be
r 2,

20
06

DRAFT

plets from our study. We define “meaningfully engage in the applet framework” to mean that the
code implements applet callbacks or invokes applet-specific service methods on the framework.
Specifically, it cannot extend java.applet.Applet yet solely call AWT service methods.

6.1 Design Fragments from Sun Demos
We decided to start populating our catalog of design fragments by examining the demo applets
provided in the Sun JDK. The intent of these demo applets was both to impress programmers with
the applet framework’s capabilities as well as instruct the next generation of applet writers, so it
seemed a good place to start looking for canonical patterns of interaction with the framework.

Recognizing a design fragment is equivalent to defining a category. The design fragment
author must examine source code and recognize that a subset of that code is repeated elsewhere.
The author then encodes this pattern as a design fragment and binds it to the source code. Some
of our initial attempts to define design fragments were overly broad (e.g., an applet that paints
to the screen) and others overly narrow (e.g., an applet that has a background thread for running
a control panel). The selection of an appropriate scope became easier after defining a dozen or
so design fragments. However, it is natural that different authors would create different design
fragments in same way that different authors would create different code libraries.

From the twenty Sun demo applets we found ten design fragments. A tabulation of these
design fragments including a short description and how often they occurred is shown in Table
6.1. The first column lists the design fragments by category and name. A short description of the
design fragment is in the second column, and the number of times the design fragment was found
in the Sun demos and the internet are in the third and fourth columns. Note that the Background
Continuous V1 and Focus Listener applets have a count of zero for the Sun column because they
were not discovered until looking at applets from the internet. Also, the One-time Init Task and
Timed Task design fragments were not found in the applets from the internet. All other design
fragments were found in both.

In order to ensure that design fragments were consistently identified despite differences in
the source code, we established the set of rules shown below to define the required matches and
the allowed deviations. The rules were:

• Background Continuous V2: Must have a field holding reference to thread, Must create
thread in start(), assigning field to thread, Must set field to null in stop(), Must
implement run() and loop continuously until field is not the same as currently running
thread.

• One-time Init Task: Must create thread in init(), Thread must execute run() to com-
pletion just once.

• One-time On-demand Task: May create thread at any time, Thread must execute run()
to completion just once.

• Timer: Must create a new TimerTask in start() and call schedule() on it, Must call
cancel() on the TimerTask in stop().

• Event Handling (all kinds): Must register in init() using addZZZListener(), Must
implement relevant interface, Must implement interface methods, May fail to de-register

26

Nov
em

be
r 2,

20
06

DRAFT

Design Fragment Name Description Instances
from
Sun

demos

Instances
from

internet

Threading
Background Continuous v1 A separate thread used to execute an

ongoing task
0 9

Background Continuous v2 Same as above, but with a race
condition removed

6 3

One-time Init Task A separate thread used to run a task
at startup, once

2 0

One-time On-Demand Task A separate thread used to run a task
at a domain-specific time, once

1 3

Timed Task A task that should be repeated
regularly

1 0

Event Handling
Component Listener Listening for component events 1 1
Focus Listener Listening for when the applet gets

focus in the GUI
0 1

Key Listener Listening for keyboard events 1 2
Mouse Listener Listening for simple mouse events 10 12
Mouse Motion Listener Listening for complex mouse events 4 11
Other
Parameterized Applet An applet that reads parameters from

a web page
13 17

Manual Applet An applet that can be run from the
command line because its main
method manually invokes the applet
lifecycle methods

5 5

Table 6.1: Design fragment frequency

27

Nov
em

be
r 2,

20
06

DRAFT

in destroy() using removeZZZListener().
• Parameterized Applet: Must call getParameter(), perhaps not from init(), May

fail to define getParameterInfo(), May fail to match getParameter() calls with
getParameterInfo() data.

• Manual Applet: Must have main() method that calls init() and start() on applet

6.2 Design Fragments from Internet

In order to evaluate our design fragments, we next collected a set of thirty-six applets from the
internet. Our goal was to collect applets that had not been created by Sun so we used the search
string import java.applet.Applet -site:sun.com. We revised our search strings to ensure that the
applets meaningfully engaged in the applet framework, either by using one of the lifecycle meth-
ods or event handling interfaces. To find threaded applets, we added java.lang.Thread to the
search string; to find mouse listener applets, we added java.awt.MouseListener; to find param-
eterized applets, we added getParameter. We collected the first ten applets that matched each
search string. As a result of our targeted search process, we were sure to get applets that used the
features we searched for but our collection of applets no longer represented a neutral sampling
of applets on the internet.

A concern about our process is that our searches preferentially targeted specific kinds of
applets, specifically those using threads, engaging in event listening, and reading parameters.
Internet searches indicate that 27% of applets use threads, 3.5% use events, and 18% use param-
eters.

From the internet applets we found an additional two design fragments: Focus Listener Ap-
plet and Background Continuous V1. The Focus Listener Applet design fragment is structurally
identical to the other listener design fragments except that it listens for user interface focus
changes. Background Continuous V1 and V2 are the same in intent and nearly identical in
structure, differing only in a single check that occurs in the run() method. V1 checks that the
thread field is not null while V2 checks that the thread field is equal to the currently running
thread. Similarly to how the design fragments were defined in the previous section, the rules
for identifying the Background Continuous V1 design fragment are: Must have a field holding
reference to thread, Must create thread in start(), assigning field to thread, Must set field to
null in stop(), Must implement run() and loop continuously until field is found to be null.

Table 6.3 at the end of this paper is a compilation of all of the applets analyzed and the design
fragments that were found within them.

We tolerated some deviations from the ideal in matching the design fragments to the code.
The most common deviation was a failure to de-register for events, which occurred in about two-
thirds of the listening applets. Also common was the reading of parameters via getParameter()
but a failure to publish those parameters in getParameterInfo(), which occurred in about a
third of the Parameterized Applets. Non-conformance is detailed in Table 6.2. We note these de-
viations not as compelling evidence that design fragments can reduce bugs in code, but rather as
evidence that even in debugged, released code it is possible to find incorrect usage of framework
interfaces because of the difficult, non-local nature of engaging with a framework.

28

Nov
em

be
r 2,

20
06

DRAFT

Sun
Applets

Internet
Applets

Failure to define getParameterInfo() 0 / 13 12 / 17
Failure to de-register for events 3 / 16 26 / 27

Table 6.2: Non-conformance to design fragment

The design fragments we discovered fall into three categories: threading, event handling,
and other. The threading design fragments deal with how to coordinate threads with the pre-
determined applet method callbacks. The event handling design fragments deal with how to
obtain additional events from the applet (and also AWT) framework. In the other category,
Parameterized Applet deals with how to obtain the textual parameters that can be passed into an
applet and how to report to users what parameters can be passed in. Manual Applet deals with
how to provide a main() method that simulates the callback structure of an applet so that the
applet can be invoked from the command line.

The three categories of design fragments are discussed in detail in the following three sub-
sections.

6.3 Threaded Applets

Five of the design fragments had the purpose of coordinating a separate thread. Two of these are
the Background Continuous variants that have been discussed as a running example through this
paper, as in Figure 4.1. These threads are intended to run for a long time, usually the duration of
the applet.

The One-Time Init Task design fragment uses a thread to perform some time-consuming
startup task, such as establishing a connection with a server. This task is done in a background
thread so as to keep the GUI responsive. This task is started in the init() callback method.
For the One-Time On-Demand Task design fragment, the only difference is that the background
task can be started at any time during the running of the applet, such as when the user presses a
key. It is possible to consider the former as a special case of the latter.

The Timed Task design fragment was only found in the Sun demo applets but could have
been applied in many places where Background Continuous was used. Timed Task uses a Java
Timer instead of a thread and the Timer can be set to run every so many milliseconds. The
Clock2 applet from Figure 1.1 could have been written more simply and with less risk of a race
condition had it used the Timed Task instead.

The applet framework never explicitly requires programmers to create new threads yet 27%
of applets on the internet do. The applet framework constrains the solution space for program-
mers and they in turn have solved their problem using threads. It is interesting to note that
no traditional technique for documenting interfaces, in this case framework interfaces, would
instruct programmers to use threads.

29

Nov
em

be
r 2,

20
06

DRAFT
Figure 6.2: Mouse event handling structure

6.4 Event Handling Applets
All of the event handling design fragments followed the structure shown in Figure 6.2, which
shows the Mouse Listener design fragment. The programmer’s code must implement the ap-
propriate listener interface, in this case MouseEvent, and provide implementations for each of
the required callback methods defined in that interface. In the init() callback method of
the applet, the programmer’s code calls the framework service method to register for callback
events of this type, in this case addMouseListener(). A corresponding removeMouse-
Listener() service method is provided for the applet to de-register for events and it should
be called in the destroy() callback method on the applet.

Many of the applets from the internet did not de-register for events. Since most applets
respond to events their whole life, there is little harm in this since destruction of the applet
happens just before the entire program terminates. It is present in the design fragment because
the Sun applets, with few exceptions, de-registered for events and because it is probably good
practice.

6.5 Parameterized Applets
Java applets are often run from web pages. It is possible to pass parameters into the applet via the
HTML text, like: <applet code=ArcTest.class width=400 height=400>. In
this case, the parameters width and height are passed in as strings with values of “400”. The
applet can read these parameters with the framework service method getParameter(String

30

Nov
em

be
r 2,

20
06

DRAFT
Figure 6.3: Parameter handling structure

name). It is also possible for an applet to let its users know what parameters they can pass in, and
this is done with the non-lifecycle callback method getParameterInfo(), which returns an
array containing the parameters and their expected types.

Ideally, every applet that reads parameters would publish the fact that it reads them. Fur-
thermore, the published list should match exactly the calls to getParameter() made by the
applet. In practice it appears easy to break this non-local constraint since more than half of the
applets from the internet had a mismatch between the parameters they queried and the parameters
they published.

6.6 Similarities Between Sun and Internet Applets
Some of the applets from the internet shared structural features with the Sun applets. Specifically,
some of the field names were identical. The threaded Sun applets used the following field names
to hold a reference to the thread: engine, kicker, killme, runner (twice), and timer. The internet
applets used: engine, kicker, killme, runner (four times), aniThread, artist, clock, _helloThread,
loader, marcher, my_thread, Tetris1, and Tetris2. Note that the highlighted field names engine,
runner, kicker, and killme are found in both the demo applets and the internet applets.

6.7 Full List of Applets and Design Fragments

31

Nov
em

be
r 2,

20
06

DRAFT

Source DF Name A
pp

le
tW

ith
T

hr
ea

dV
0

A
pp

le
tW

ith
T

hr
ea

dV
1

A
pp

le
tW

ith
T

hr
ea

dV
2

A
pp

le
tW

ith
T

hr
ea

dV
3

A
pp

le
tW

ith
T

im
er

C
om

po
ne

nt
Li

st
en

er

F
oc

us
Li

st
en

er

K
ey

Li
st

en
er

M
an

ua
lA

pp
le

t

M
ou

se
Li

st
en

er

M
ou

se
M

ot
io

n

P
ar

am
et

er
iz

ed
A

pp
le

t

Sun demo animator 1 1 1
Sun demo arctest 1
Sun demo barchart 1
Sun demo blink 1 1
Sun demo cardtest 1
Sun demo clock 1 1
Sun demo dithertest 1 1 1
Sun demo drawtest 1
Sun demo fractal 1 1 1
Sun demo graphicstest 1
Sun demo graphlayout 1
Sun demo imagemap 1 1 1 1
Sun demo jumpingbox 1 1 1
Sun demo moleculeviewer 1 1 1 1
Sun demo nervoustext 1 1 1
Sun demo simplegraph
Sun demo sortdemo 1 1 1
Sun demo spreadsheet 1 1 1
Sun demo tictactoe 1
Sun demo wireframe 1 1 1 1
Internet anbutton 1 1
Internet antacross 1 1 1
Internet antmarch 1 1 1
Internet blinkhello 1
Internet brokeredchat 1 1 1
Internet bsom 1
Internet buttontest 1 1
Internet cte
Internet demographics 1 1
Internet dotproduct 1 1 1
Internet envelope
Internet fireworks 1 1
Internet gammabutton 1
Internet geometry 1
Internet hellotcl 1 1 1
Internet hyperbolic 1 1
Internet iagtager 1
Internet inspect 1
Internet kbdfocus 1 1 1
Internet lagttager
Internet linprog 1 1
Internet mousedemo 1 1
Internet myapplet
Internet myapplet2 1 1 1 1
Internet nickcam 1
Internet notprolog 1
Internet scatter 1
Internet scope 1 1
Internet simplepong 1
Internet simplesun 1 1
Internet smtp 1
Internet superapplet 1 1
Internet tetris 2
Internet ungrateful 1
Internet urccalendar 1
Internet urlexample 1 1
Internet webstart 1 1 1 1
Internet ympyra 1

Total 9 9 2 4 1 2 1 3 10 22 15 30

Table 6.3: All applets with origin and counts of design fragments

32

Nov
em

be
r 2,

20
06

DRAFT

Chapter 7

Case Study: Eclipse Framework

33

Nov
em

be
r 2,

20
06

DRAFT

34

Nov
em

be
r 2,

20
06

DRAFT

Chapter 8

Case Study: Acme Studio Framework

35

Nov
em

be
r 2,

20
06

DRAFT

36

Nov
em

be
r 2,

20
06

DRAFT

Chapter 9

Case Study: JPL Framework

37

Nov
em

be
r 2,

20
06

DRAFT

38

Nov
em

be
r 2,

20
06

DRAFT

Chapter 10

User Reports

39

Nov
em

be
r 2,

20
06

DRAFT

40

Nov
em

be
r 2,

20
06

DRAFT

Chapter 11

Related Work

This work builds upon previous work in a number of areas. Researchers in the 1980s and 1990s
documented the use of software frameworks that they observed being used in industrial and aca-
demic settings. Frameworks were described as a new reuse mechanism that differed from class
libraries. Ralph Johnson suggested natural language design patterns as a way for programmers
to understand frameworks. Most design patterns are based on the ideas of role modeling, where a
given class can play various roles and its responsibilities are the superset of the responsibilities of
its roles. Research into design patterns led to tools that could model design patterns precisely and
compare them with source code. The precise modeling of design patterns was modified to de-
scribe the programmers burden and instead of how the framework was implemented. Cookbooks
and recipes followed a similar path starting from unstructured text through a precise representa-
tion.

11.1 Categorization of the Research

Table 11.1 provides a categorization of the work on framework documentation. It divides the
work along two dimensions describing the style of documentation. The first dimension is whether
the documentation provides examples or specifications. The second dimension is whether the
documentation prescribes how clients should use the framework or describes the implementation
of the framework.

Relatively few projects have set out to describe the internals of frameworks and most of these
projects were older, when frameworks were themselves just beginning to become popular. Most
research has focused on documenting how to use the framework rather than documenting how
the framework is designed. Techniques such as JavaDoc and Design Patterns can be applied
to almost any documentation problem, and have been used to describe how frameworks work
internally.

Techniques in the Example-based dimension do not claim to document every possible and
correct use of the framework but instead provide known-good examples. This simplifies the task
both for the documentation author and for the reader.

Conversely, techniques in the Specification-based dimension claim to cover all correct use in
much the same way that functional specifications for methods should cover all cases of inputs

41

Nov
em

be
r 2,

20
06

DRAFT

Prescribes how clients should use
the framework

Describes the
implementation of
the framework

Specification-based Helm Contracts
FCL Constraints
UML-F Profile
Declarative Metaprogramming
OOram
Riehle frameworks
JavaDoc

JavaDoc
OOram
Riehle fwks

Example-based Decl. Metaprogramming
Design Patterns
Hooks
JavaFrames
Cookbooks
JavaDoc
Design Fragments

Design Patterns
JavaFrames
Utrecht Tool
JavaDoc

Table 11.1: Categorization of the research

and outputs. A Microsoft Foundations Classes example from FCL Constraints constrains all
subclasses of CWnd such that each must call one of three window creation methods defined in
the framework.

11.2 Role Modeling
Object Oriented Role Analysis Modeling (OOram) is a software engineering method developed
by Trygve Reenskaug that focuses on collaborating objects (role models) instead of classes [29].
Each role model consists of a number of roles with assigned behavior. Classes are created by
composing these roles. A tool for the Smalltalk language was created for authoring and com-
posing these role models. Reenskaug recalls Brad Cox’s metaphor [2] of the surface area of
components, that is, the things that must be understood about the component for a client to use it
correctly, and applies it to frameworks. He notes that the surface area of a framework should be
kept as small as possible, can be described with role models, and should not be changed for fear
of breaking existing applications. Reenskaug is credited with the creation of the Model-View-
Controller pattern, whose implementation in Smalltalk may be considered the earliest frame-
work [20].

In his thesis [31], Dirk Riehle extends the role modeling concepts from OOram to treat frame-
works as first-class concepts, calling it “role modeling for framework design.” Role models de-
scribe the interface between the framework and the programmer’s code; “free roles” represent
the roles the programmer can implement to use the framework. Programmers should find frame-
works with associated role models easier to comprehend since the complexity of the class models
has been explained in terms of cross-cutting role models.

42

Nov
em

be
r 2,

20
06

DRAFT

11.3 Precise Design Patterns, Code Ties
The Utrecht University design pattern tool tool [5], implemented in Smalltalk, allowed the cre-
ation of prototype-based design patterns and binding of these design patterns to source code.
Conformance checking between the pattern and source code could be performed and predefined
fixes could be used to repair non-conformance. Modeling focused on design patterns and ap-
plication of the tool to frameworks was not specifically explored. Conformance checking was
limited to static program structure while our analysis additionally supports behavior checking.

11.4 Frameworks
Confronting the challenge of communicating how to use the Model-View-Controller framework
in Smalltalk-80, Krasner and Pope [23] constructed an 18 page cookbook that explained the
purpose, structure, and implementation of the MVC framework. The cookbook begins with text
but increasingly weaves in detailed code examples to explain how the framework could be used to
solve problems. This cookbook was designed to be read from beginning to end by programmers
and could also be used as a reference but every recipe did not follow a consistent structure nor
was it suitable for parsing by automatic tools.

Ralph Johnson appears to have been the first to suggest documenting frameworks using pat-
terns. He notes that the typical user of framework documentation wants to use the framework to
solve typical problems [18] but also that cookbooks do not help the most advanced users [19].
Patterns can be used both to describe a framework’s design as well as how it is commonly used.
He argues that the framework documentation should describe the purpose of the framework, how
to use the framework, and the detailed design of the framework. After presenting some gradu-
ate students with his initial set of patterns for HotDraw, he realized that a pattern isolated from
examples is hard to comprehend.

Froehlich et al.’s Hooks focus on documenting the way a framework is used, not the design
of the framework [7]. They are similar in intent to cookbook recipes but are more structured in
their natural language. The elements listed are: name, requirement, type, area, uses, participants,
changes, constraints, and comments. The instructions for framework users (the changes section)
read a bit like pseudo code but are natural language and do not appear to be parsable by tools.
Cookbook recipes, hooks, and design fragments are similar in that they all provide example-
based descriptions of how to use a framework. Hooks added structure to recipes but were still
natural language; design fragments regularize hooks to make them tool-readable and enable tool-
based assurance.

Design patterns themselves can be decomposed into more primitive elements [28]. Pree
calls these primitive elements metapatterns and catalogs several of them with example usage.
He proposes a simple process for developing frameworks where identified points of variability
are implemented with an appropriate metapattern, enabling the framework user to provide an
appropriate implementation.

The declarative metaprogramming group from Vrije University [33, 34] uses Pree’s metapat-
terns [28] to document framework hotspots and defines transformations for each framework and
design pattern. Framework instances (plugins) can be evolved (or created) by application of the

43

Nov
em

be
r 2,

20
06

DRAFT

transformations. The tool uses SOUL, a prolog-like logic language. The validation was done on
the HotDraw framework by specifying the metapatterns, patterns and transformations needed.
The validation uncovered design flaws in HotDraw, despite its widespread use, along with some
false positives. The declarative metaprogramming approach to modeling framework hotspots
appears to have significant up-front investment before payoff in order to provide its guarantees
about correct use of the framework. It may additionally assume a higher level of accuracy or
correctness in frameworks than will commonly be found in practice.

In [34], the authors comment that their approach specifically avoids design patterns in favor
of metapatterns because there could be many design patterns. While this makes their technique
generally applicable and composable, it will be difficult to add pattern-specific semantics and
behavior checking to their approach.

A UML profile is a restricted set of UML markup along with new notations and seman-
tics [6]. The UML-F profile provides UML stereotypes and tags for annotating UML diagrams
to encode framework constraints. Methods and attributes in both framework and user code can
me marked up with boxes (grey, white, half-and-half, and a diagonal slash) that indicate the
method/attribute’s participation in superclass-defined template patterns. A grey box indicates
newly defined or completely overridden superclass method, a white box indicates inherited and
not redefined, a half-and-half indicates redefined but call to super(), and a slashed box indicates
an abstract superclass method.

The Fixed, Adapt-static, and Adapt-dyn tags annotate the framework and constrain how users
can subclass. Template and Hook tags annotate framework and user code to document tem-
plate methods. Stereotypes for Pree’s metapatterns (like unification and separation variants) are
present, as are predefined tags for the Gang of Four [9] patterns. Recipes for framework use are
presented in a format very similar to that of design patterns but there is no explicit representa-
tion of the solution versus the framework. The recipe encodes a list of steps for programmer to
perform.

The FRamework EDitor / JavaFrames project [12, 13, 14] is a result of collaboration be-
tween The University of Tampere, the University of Helsinki, and commercial partners starting
in 1997. They have developed a language for modeling design patterns and tools that act as
smarter cookbooks, guiding programmers step-by-step to use a framework. With the 2.0 release
of JavaFrames, many of these tools work within the Eclipse IDE. Their language allows expres-
sion of structural constraints and the tool can check conformance with the structural constraints.
Code can be generated that conforms to the pattern definition, optionally including default im-
plementations of method bodies. Specific patterns can be related to general patterns; for example
a specific use of the Observer pattern in a particular framework can be connected to a general
definition of the Observer pattern.

The Framework Constraint Language (FCL) [16] applies the ideas from Richard Helms ob-
ject oriented contracts [15] to frameworks. Like Riehle’s role models, FCLs specify the interface
between the framework and the user code such that the specification describes all legal uses of
the framework. The researchers raise the metaphor of FCL as framework-specific typing rules
and validate their approach by applying it to Microsoft Foundation Classes, historically one of
the most widely used frameworks. The language has a number of built-in predicates and logical
operators. It is designed to operate on the parse tree of the users code. Though targeted at plugin
points, this language appears to be compatible with design fragments and could provide the basis

44

Nov
em

be
r 2,

20
06

DRAFT

of a richer constraint language for design fragments.

11.5 Aspects
Aspect oriented programming seeks to improve the modularity of source code by localizing
programmer-chosen concerns into their own input files [22, 26, 32]. For example, the parts of a
program that deal with logging could be extracted to a new source file so they do not clutter up
the main code. Design fragments and aspects share a similar desire to decompose a program into
smaller chunks. While design fragments are specifications, aspects are implementations. It may
be possible to use aspects to provide default implementations for design fragments.

11.6 General Programming Assistance
The complexity of programming has long been recognized and attempts to help programmers
manage that complexity have been researched. The Inscape Environment [27] focused on the
challenges of evolution and scale in procedural programs. It addresses these challenges in part
through specification of interfaces, much like design fragments. The specification language was
deliberately impoverished in order to avoid the tar pit of verification, again much like the desire
of design fragments to maintain simplicity in its language to encourage adoption.

The Programmers Apprentice [30] was an attempt to apply artificial intelligence to the prob-
lem of programming by providing an intelligent agent to support the programmer. Cohesive
collections of program elements are bound together into a cliché, similar to a design fragment
based on syntactic code structure, encoding roles and constraints. These clichés are used by the
tool to aid the programmer.

11.7 Comparison of Design Fragments with Related Work
Design fragments are similar to JavaFrames in that both encode structural patterns that pro-
grammers use to engage with a framework. JavaFrames has been influenced by the cookbook
approaches and provides automated tool support to ensure the recipe has been followed. Design
fragments add a description of the relevant parts of the framework. This description begins to
answer why the recipe or pattern works, which enables two things.

First, analysis tools that check for errors, such as the race condition described in this paper,
can take advantage of the descriptions of the framework. Direct analysis of the framework code
may be impossible because its source is unavailable or because it is too large.

Second, knowing why a recipe works enables the programmer to go beyond the recipe. Func-
tionality demands from his problem domain will cause him to push on the limits of the pattern
and he must be given an understanding of how this can be done. With exposure to many design
fragments, the programmer will build up a mental model of how the framework acts on his code.

At first glance design fragments appear very similar to Riehle’s role models. Following the
categorization from section 11.1, role models are specification-based, while design fragments are
example-based. As such, a role model strives to describe the complete and abstract protocol that

45

Nov
em

be
r 2,

20
06

DRAFT

every set of classes conforming to it must follow, while design fragments describe just a single
legal use of that protocol. In addition to this fundamental difference, there are differences of focus
and intent. First, design fragments often span multiple framework role models, such as in the
Mouse Listener design fragment where the Applet callback methods are coordinated to invoke
service methods to register for mouse events. Second, design fragments often encode actions
outside of the framework, such as in the thread coordination design fragments. Third, design
fragments are asymmetric, so they define only what the programmer must do and only provide a
programmer-centric view of what the framework roles are doing. The intent of both techniques
is to aid programmers in using frameworks and in practice their strengths are complimentary.

11.8 Design Fragments vs. Role Modeling
<This taken from email to Dirk Riehle>

You are right that your application of role modeling to frameworks has sufficient similarity to
design fragments that it warrants a specific comparison. As I see it, the essential difference is that
each design fragment is an example – something known to work but not an attempt to specify
to full breadth of correct use of any given part of the framework. While the example does have
constraints on it, the constraints ensure that the programmer is following the example exactly
rather than specifying the full envelope of correct framework use. I believe that in practice
programmers would be best served if the framework were specified both with role models and
with design fragments.

I have a concern that not even the framework authors truly know the full set of constraints they
are placing on the programmer, so in practice descriptions of the role models will be incomplete.
I’m interested to hear what you’ve learned about this topic as you’ve done many case studies
applying role models to frameworks.

In addition to this fundamental difference, design fragments also differ in emphasis in a few
more ways. It’s possible that these are significant differences too, but I’m not yet convinced.

First, design fragments often span role models in an application framework. (BTW, I would
bet that most programmers don’t realize when they’re spanning frameworks inside an application
framework). An example of this is seen in the Mouse Listener design fragment. It tells the
programmer, in essence, that given the callback sequence in the Applet framework, the best
place to register/deregister for mouse events is in the init() and destroy() callbacks. It seems
to me that there is no good place in either role model to document this nugget of information,
though I suppose it would be possible to synthesize a new role model that is a composition of
the two. On the other hand, if you had to create role models for each "interesting" combination,
you’d get an explosion that would work against the clarity of role models.

Second, design fragments often let the programmer know what to do outside of the free roles.
A great example is in the coordination of a thread by an applet. Tons of applets use threads be-
cause they need to run at times other than during the provided callbacks. The design fragment
encodes a valuable chunk of advice, that is, how to work within the callbacks of the applet to
ensure that your thread starts and stops in coordination with the framework. The programmer is
using free roles in the framework but the interesting part is what they do when they get specific
callbacks, not that the callbacks exist, since there are other callbacks that wouldn’t help to coor-

46

Nov
em

be
r 2,

20
06

DRAFT

dinate a thread. Again, it would seem inappropriate to encode this information in a role model
describing the framework API.

Finally, design fragments are asymmetric and tell all about what the programmer must do but
say nothing about how the framework must be implemented. Arguably this is no big deal because
you could chop off half a role model if you had a whole one, but it’s important not to overload
the programmer with too much information. Role models are better than reading the source
of the framework in that they focus attention on one collaboration and describe responsibilities
instead of implementations, but they still provide the programmer trying to use an API with more
information than necessary.

47

Nov
em

be
r 2,

20
06

DRAFT

48

Nov
em

be
r 2,

20
06

DRAFT

Chapter 12

Analysis of Hypotheses

12.1 Hypotheses

12.1.1 from Applet OOPSLA paper

Our vision for design fragments relies upon some assumptions about how programmers interact
with frameworks and example code. These assumptions are reasonable but it is best to state them
explicitly as hypotheses so that data can be gathered to support or refute them.

Our first hypothesis is that patterns exist in source code, specifically source code that interacts
with frameworks. If this is not true, then each programmer interacts with the framework in a
slightly different way and it is senseless to try to encode patterns. A corollary to this is that
unnecessary diversity exists in source code, meaning that sometimes programmers could choose
to interact with the framework in a conventional way instead of being different. If unnecessary
diversity exists then it might be possible to increase the frequency of pattern use by reducing that
unnecessary diversity.

Our second hypothesis is that programmers reference examples, specifically source code ex-
amples that appear to do the same thing they want their program to do. Frameworks often come
with example applications and it is possible that programmers look at these applications and
clone their structure using the “Monkey see / monkey do” rule. If programmers do not already
reference examples, then convincing them to reference a catalog of design fragments will be
more difficult.

Our third hypothesis is that the effort to create a catalog tapers. As more applications are
analyzed it should become less likely that more design fragments are found. Ideally, the discov-
ery of new design fragments would follow an asymptotic curve. Analysis of a few applications
would yield a great many design fragments but the rate of their discovery would slow down as
more applications are analyzed. The earlier the catalog reaches 80% of its maximum size, or
some other threshold of utility, then the more practical it will be to build it.

Our final hypothesis is that the design fragments language can express patterns, specifically
the patterns that the authors have recognized in the code. The evaluation for this hypothesis
will be subjective and we will note the cases where we recognized a pattern but were unable to
express it.

49

Nov
em

be
r 2,

20
06

DRAFT

12.1.2 Central Hypotheses
• The design fragment technique can be applied to existing large commercial frameworks,

real programming languages, and to off-the-shelf code

Provide a catalog of reusable design fragments for two large frameworks (e.g., Eclipse
and EJB): Applet, AcmeStudio, Eclipse, JPL?

Case studies of two large frameworks with bindings between 3 open source programs
and the design fragment catalogs: Applet (50), AcmeStudio (4-6), Eclipse (2-5)

• The variety of design fragments is limited for a given plugin point, enabling the creation
of a reasonable size catalog of design fragments with good coverage of the code seen in
practice

From bindings between catalogs and programs, demonstrate that with each new pro-
gram, fewer new design fragments must be added to catalog: Applet, AcmeStudio.
Maybe: Eclipse, JPL

Demonstrate that the catalog has, say, 80% coverage of a survey of OSS programs:
Applet coverage

• It is possible, through analysis, to provide programmers with assurance that their code
conforms to the expressed constraints of the framework.

Implement simple static analysis for conformance assurance: Required new call, re-
quired new instance, class ref in XML

Design how analysis tools could extend the design fragment language

Report on what % of DF annotations can be checked through analysis

Navigation tools for DF, code, bindings, and catalog

12.1.3 Strengthening Hypotheses
• The design fragment technique has a low entry barrier for programmers and design frag-

ment authors.

Report on usability by others (informal): Bradley, Nicholas?, others?

• The explicit representation of the framework plugin points as design fragments is cost-
effective when applied to widely-used frameworks

Cost-benefit analysis of design fragments vs. training, books, etc.: Task analysis (if
time)

• The use of design fragment technique can reduce the time for framework novices and
experts to become productive in an unfamiliar framework

- Report on usability by others (informal): Bradley, Nicholas?, others?

50

Nov
em

be
r 2,

20
06

DRAFT

12.2 Analysis

The results of the case study support our hypotheses. Programmers did engage the applet frame-
work in roughly the same way. Based on looking at their applets, it appears that programmers
copied the structure of the Sun demos. We were able to create a catalog quickly. And, with a few
exceptions, the design fragment language was able to express the patterns we found.

12.3 Hypothesis: Patterns Exist in Code

Our first hypothesis was that patterns exist in source code, specifically source code that interacts
with frameworks. As seen in Table 6.3, across the 56 applets we found 108 design fragment
instances. In order to conform to a design fragment, the program must adhere to the rules previ-
ously described.

Conformance was universal for the bureaucratic parts of design fragments dealing with event
handling, such as implementing interfaces and providing method implementations. Universal
conformance is not surprising because this bureaucracy is checked by the compiler and the code
will never function correctly without it. Conformance was also universal for registering for
events, but about 2 in 3 applets failed to de-register, including essentially all of the non-Sun
applets. In most applets, no fault can be detected by a user because the applet and the rest of the
Java environment are terminated at the same time. Note too that registering and de-registering
must be implemented in two different callback methods.

In the Parameterized Applet design fragment, programmers were asked to keep two parts
of their code consistent: asking for parameters and publishing which parameters they ask for.
More than a third of the applets, and more than two thirds of the non-Sun ones, failed to publish
their parameters. Parameters can be passed in to the applet even when those parameters are not
published, so a user may not detect a fault. Note that checking for parameters is implemented in
a different method than publishing the parameters.

We note that type-checked bureaucracy is correlated with high conformance. Low confor-
mance is correlated with difficulty to observe faults through testing and a lack of tool-based
conformance checking (such as type checking from the compiler).

A corollary to our hypothesis was that unnecessary diversity exists in source code. We found
some evidence for this in the existence of two versions of the Background Continuous design
fragment, but these versions were substantially similar. It is possible that our process of searching
the internet for specific kinds of applets led to less diverse code, or that the applet framework is
so simple that consistency is high.

12.4 Hypothesis: Programmers Reference Examples

Our second hypothesis was that programmers reference examples, specifically source code ex-
amples that appear to do the same thing they want their program to do. Two features of the
applets from the internet support this hypothesis, both from the threaded applets category.

51

Nov
em

be
r 2,

20
06

DRAFT
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

C
at

al
og

 S
iz

e
(N

um
be

r
of

 d
es

ig
n

fr
ag

m
en

ts
)

Applets Analyzed

Sun
Internet

Figure 12.1: Catalog size

First, the replication of the threading bug in nine of the twelve applets that implemented the
Background Continuous design fragment variants supports the notion that this bug was copied
from the original demo applet bug.

Second, identical names of the thread fields strongly suggests that code was copied. The
original Sun applets used names like engine and runner that could plausibly be independently
re-created by other programmers. However, names like kicker and killme are also seen in both
Sun and internet applets seem unlikely to have arisen independently by chance.

If the next generation of frameworks were to distribute its example applications with design
fragments bound to the source code, then there is a good chance that this expression of design
intent would also be copied by programmers and bug fixes like the race condition could be
propagated to copied code.

12.5 Hypothesis: Effort to Create a Catalog Tapers

Our third hypothesis was that the effort to create a catalog tapers. After examining fifty-six
applets we had found twelve design fragments for our catalog. Ten of these twelve were found in
the initial twenty demo applets from Sun. One of the remaining design fragments was the buggy
version of Background continuous and the other was the Focus Listener, which is structurally
equivalent to the other event listening design fragments.

Our catalog was built by examining the applets alphabetically starting with the Sun demo
applets. The growth of the catalog is plotted in Figure 12.1. We would like to see the rate of
discovery of new design fragments slow down as more applets are analyzed, and this is what

52

Nov
em

be
r 2,

20
06

DRAFT

is shown in the chart. This result is not a quirk of the alphabetical order of evaluation since a
glance at Table 6.3 reveals that there are paths that populate the catalog either more quickly or
more slowly.

12.6 Hypothesis: Design Fragment Language Can Express
Patterns

Our fourth hypothesis was that the design fragments language can express patterns, specifically
the patterns that the authors have recognized in the code. The design fragment language did a
good job of encoding the structure of the patterns with a few exceptions.

In the Parameterized Applet design fragment, the programmer should return an array of an
array of string to publish the parameters that his applet checks. The strings are the param-
eters that are checked elsewhere in the program via calls to the framework service method
getParameter(). Since the design fragment language cannot refer to the strings used as
actual parameters to method invocations, nor can it refer to the strings in the array, it cannot
express the constraint that these strings be paired.

The design fragment language also cannot express when the programmer may change the
name of a role (e.g., class, method, or field) and when he should not. We have adopted the
convention that role names beginning with “role” (e.g., RoleApplet) can be changed but other
cannot, (e.g., start()).

The behavioral requirements of a pattern can only be minimally expressed in the design frag-
ment language. The differences between a design fragment where the thread runs continuously
versus one where the thread runs just until its task are completed must be expressed in natural
language that cannot be checked by tools. Additionally, the expression of the order of framework
method callbacks is only partial.

Despite these restrictions in expressiveness, we found that the interaction between the pro-
grammer’s code and the framework could largely be expressed through the design fragments
language.

53

Nov
em

be
r 2,

20
06

DRAFT

54

Nov
em

be
r 2,

20
06

DRAFT

Chapter 13

Conclusion

55

Nov
em

be
r 2,

20
06

DRAFT

56

Nov
em

be
r 2,

20
06

DRAFT

Bibliography

[1] Kent Beck and Donald G. Firesmith. Kent Beck’s Guide to Better Smalltalk : A Sorted Col-
lection (SIGS Reference Library). Cambridge University Press, 1998. ISBN 0521644372.
1

[2] Brad Cox. Object-Oriented Programming, An Evolutionary Approach. Addison Wesley,
New York, 1987. 11.2

[3] The Debian Linux Distribution. http://www.debian.org. URL http://www.debian.
org. 5.1

[4] D. Fay. An architecture for distributed applications on the internet: Overview of mi-
crosoft’s .NET platform. IEEE International Parallel and Distributed Processing Sym-
posium, April 2003. ISSN 1530-2075. doi: http://doi.ieeecomputersociety.org/10.1109/
IPDPS.2003.1213196. 1

[5] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool support for object-oriented pat-
terns. In Mehmet Aksit and Satoshi Matsuoka, editors, Proceedings ECOOP ’97, volume
1241 of Lecture Notes in Computer Science, pages 472–495, Jyvaskyla, Finland, June 1997.
2.1, 11.3

[6] Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. The UML Profile for Framework
Architectures. Addison-Wesley Professional, 2001. ISBN 0201675188. 11.4

[7] Gary Froehlich, H. James Hoover, Ling Liu, and Paul Sorenson. Hooking into object-
oriented application frameworks. In ICSE ’97: Proceedings of the 19th international
conference on Software engineering, pages 491–501, New York, NY, USA, 1997. ISBN
0-89791-914-9. doi: http://doi.acm.org/10.1145/253228.253432. 11.4

[8] Erich Gamma and Kent Beck. Contributing to Eclipse: Principles, Patterns, and Plugins.
Addison-Wesley Professional, 2003. ISBN 0321205758. 1, 5

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software (Addison-Wesley Professional Computing Se-
ries). Addison-Wesley Professional, 1995. ISBN 0201633612. 11.4

[10] David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural description of
component-based systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, chapter 3, pages 47–67. Cambridge University Press, 2000.
ISBN 0-521-77164-1. 4

[11] Aaron Greenhouse, T.J. Halloran, and William L. Scherlis. Observations on the assured

57

http://www.debian.org
http://www.debian.org

Nov
em

be
r 2,

20
06

DRAFT

evolution of concurrent java programs. Science of Computer Programming, 58:384–411,
March 2005. 4

[12] Markku Hakala, Juha Hautamäki, Kai Koskimies, Jukka Paakki, Antti Viljamaa, and Jukka
Viljamaa. Annotating reusable software architectures with specialization patterns. In
WICSA ’01: Proceedings of the Working IEEE/IFIP Conference on Software Architec-
ture (WICSA’01), page 171, Washington, DC, USA, 2001. ISBN 0-7695-1360-3. doi:
http://dx.doi.org/10.1109/WICSA.2001.948426. 1, 11.4

[13] Imed Hammouda and Kai Koskimies. A pattern-based j2ee application development envi-
ronment. Nordic Journal of Computing, 9(3):248–260, 2002. 11.4

[14] Jan Hannemann and Gregor Kiczales. Design pattern implementation in java and aspectj.
In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 161–173, New York, NY, USA,
2002. ISBN 1-58113-471-1. doi: http://doi.acm.org/10.1145/582419.582436. 11.4

[15] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: specifying be-
havioral compositions in object-oriented systems. In OOPSLA/ECOOP ’90: Proceedings
of the European conference on object-oriented programming on Object-oriented program-
ming systems, languages, and applications, pages 169–180, New York, NY, USA, 1990.
ACM Press. ISBN 0-201-52430-X. doi: http://doi.acm.org/10.1145/97945.97967. 11.4

[16] Daqing Hou and H. James Hoover. Towards specifying constraints for object-oriented
frameworks. In CASCON ’01: Proceedings of the 2001 conference of the Centre for Ad-
vanced Studies on Collaborative research, page 5. IBM Press, 2001. 11.4

[17] Daqing Hou, Kenny Wong, and H. James Hoover. What can programmer questions tell
us about frameworks? In IWPC ’05: Proceedings of the 13th International Workshop on
Program Comprehension, pages 87–96, Washington, DC, USA, 2005. ISBN 0-7695-2254-
8. doi: http://dx.doi.org/10.1109/WPC.2005.47. 4

[18] Ralph E. Johnson. Documenting frameworks using patterns. In OOPSLA ’92: conference
proceedings on Object-oriented programming systems, languages, and applications, pages
63–76, New York, NY, USA, 1992. ISBN 0-201-53372-3. doi: http://doi.acm.org/10.1145/
141936.141943. 11.4

[19] Ralph E. Johnson. Components, frameworks, patterns. SIGSOFT Softw. Eng. Notes, 22(3):
10–17, 1997. ISSN 0163-5948. doi: http://doi.acm.org/10.1145/258368.258378. 11.4

[20] Ralph E. Johnson. Frameworks = (components + patterns). Commun. ACM, 40(10):39–42,
1997. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/262793.262799. 1, 2.2, 11.2

[21] Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-Oriented
Programming, 1:22–35, June/July 1988. 2.1

[22] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of aspectj. In ECOOP ’01: Proceedings of the 15th European
Conference on Object-Oriented Programming, pages 327–353, London, UK, 2001. ISBN
3-540-42206-4. 11.5

[23] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view controller

58

Nov
em

be
r 2,

20
06

DRAFT

user interface paradigm in smalltalk-80. J. Object Oriented Program., 1(3):26–49, 1988.
ISSN 0896-8438. 11.4

[24] Sun Microsystems. Java applets. http://java.sun.com/applets/. URL http://java.
sun.com/applets/. 1

[25] Richard Monson-Haefel. Enterprise JavaBeans (3rd Edition). O’Reilly, 2001. ISBN
0596002262. 1

[26] Harold Ossher, William Harrison, Frank Budinsky, and Ian Simmonds. Subject-oriented
programming: Supporting decentralized development of objects. In Proc. 7th IBM Conf.
Object-Oriented Technology, July 1994. URL http://www.research.ibm.com/
sop/papers/decentralized.ps. 11.5

[27] Dewayne E. Perry. The inscape environment. In ICSE ’89: Proceedings of the 11th In-
ternational Conference on Software Engineering, pages 2–11, New York, NY, USA, 1989.
ISBN 0-8186-1941-4. doi: http://doi.acm.org/10.1145/74587.74588. 11.6

[28] Wolfgang Pree. Design Patterns for Object-Oriented Software Development. Addison
Wesley Longman, 1994. ISBN 0201422948. 11.4

[29] Trygve Reenskaug, P. Wold, O. A. Lehne, and Manning. Working With Objects: The Ooram
Software Engineering Method. Manning Pubns Co, 1995. ISBN 1884777104. 1, 11.2

[30] Charles Rich and Richard. C. Waters. The programmer’s apprentice: A research overview.
In D. Partridge, editor, Artificial Intelligence & Software Engineering, pages 155–182. Nor-
wood, NJ, 1991. 11.6

[31] Dirk Riehle. Framework Design: A Role Modeling Approach. PhD thesis, Swiss Federal
Institute of Technology, Zurich, 2000. 2.1, 11.2

[32] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N degrees of sepa-
ration: multi-dimensional separation of concerns. In ICSE ’99: Proceedings of the 21st in-
ternational conference on Software engineering, pages 107–119, Los Alamitos, CA, USA,
1999. ISBN 1-58113-074-0. 11.5

[33] Tom Tourwé. Automated Support for Framework-Based Software Evolution. PhD the-
sis, Vrije Universiteit Brussel, 2002. URL citeseer.ist.psu.edu/article/
tourw02automated.html. 11.4

[34] Tom Tourwé and Tom Mens. Automated support for framework-based software evolution.
In ICSM ’03: Proceedings of the International Conference on Software Maintenance, page
148, Washington, DC, USA, 2003. ISBN 0-7695-1905-9. 11.4

59

http://java.sun.com/applets/
http://java.sun.com/applets/
http://www.research.ibm.com/sop/papers/decentralized.ps
http://www.research.ibm.com/sop/papers/decentralized.ps
citeseer.ist.psu.edu/article/tourw02automated.html
citeseer.ist.psu.edu/article/tourw02automated.html

	1 Introduction
	2 Object Oriented Frameworks
	2.1 Object-oriented frameworks
	2.2 Why frameworks are complex for clients
	2.3 Current best practice
	2.4 Required features of a solution

	3 Thesis and Hypotheses
	3.1 Thesis statement
	3.2 Central Hypotheses
	3.3 Strengthening Hypotheses
	3.4 Expected Contribution

	4 Design Fragments
	4.1 Design Fragment Language
	4.2 Structure
	4.3 Behavior
	4.4 Bindings to Java Source Code

	5 Tool
	5.1 Design Fragment Catalog View
	5.2 Design Fragment Instances View
	5.3 Eclipse Problems View
	5.4 Integration

	6 Case Study: Applet Framework
	6.1 Design Fragments from Sun Demos
	6.2 Design Fragments from Internet
	6.3 Threaded Applets
	6.4 Event Handling Applets
	6.5 Parameterized Applets
	6.6 Similarities Between Sun and Internet Applets
	6.7 Full List of Applets and Design Fragments

	7 Case Study: Eclipse Framework
	8 Case Study: Acme Studio Framework
	9 Case Study: JPL Framework
	10 User Reports
	11 Related Work
	11.1 Categorization of the Research
	11.2 Role Modeling
	11.3 Precise Design Patterns, Code Ties
	11.4 Frameworks
	11.5 Aspects
	11.6 General Programming Assistance
	11.7 Comparison of Design Fragments with Related Work
	11.8 Design Fragments vs. Role Modeling

	12 Analysis of Hypotheses
	12.1 Hypotheses
	12.1.1 from Applet OOPSLA paper
	12.1.2 Central Hypotheses
	12.1.3 Strengthening Hypotheses

	12.2 Analysis
	12.3 Hypothesis: Patterns Exist in Code
	12.4 Hypothesis: Programmers Reference Examples
	12.5 Hypothesis: Effort to Create a Catalog Tapers
	12.6 Hypothesis: Design Fragment Language Can Express Patterns

	13 Conclusion
	Bibliography

